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Large-scale structures in a plane turbulent mixing layer are studied through the use of
the proper orthogonal decomposition (POD). Extensive experimental measurements
are obtained in a turbulent plane mixing layer by means of two cross-wire rakes
aligned normal to the direction of the mean shear and perpendicular to the mean
flow direction. The measurements are acquired well into the asymptotic region. From
the measured velocities the two-point spectral tensor is calculated as a function of
separation in the cross-stream direction and spanwise and streamwise wavenumbers.
The continuity equation is then used for the calculation of the non-measured compo-
nents of the tensor. The POD is applied using the cross-spectral tensor as its kernel.
This decomposition yields an optimal basis set in the mean square sense. The energy
contained in the POD modes converges rapidly with the first mode being dominant
(49% of the turbulent kinetic energy). Examination of these modes shows that the
first mode contains evidence of both known flow organizations in the mixing layer, i.e.
quasi-two-dimensional spanwise structures and streamwise aligned vortices. Using the
shot-noise theory the dominant mode of the POD is transformed back into physical
space. This structure is also indicative of the known flow organizations.

1. Introduction
The existence of large-scale coherent motions in turbulent flows has been under

investigation for several decades. During this time, several definitions as well as a
multitude of techniques have been developed to identify them. These involve statistical
means, instantaneous flow patterns (pseudo and direct), stability theory, topological
methods, conditional techniques and those developed from dynamical systems theory.
However different they are, there seems to be a general consensus that a definition
and means of identifying coherent structures are necessary for understanding and
predicting turbulence. Another consensus in coherent structure research is the need
to study the three-dimensionality and dynamics of these structures. In that vein, this
work appears to be the first to study the three-dimensionality and dynamics of the
large-scale structures in the plane turbulent mixing layer simultaneously through the
use of the proper orthogonal decomposition (POD).

† Present address: National Research Council, NASA Langley Research Center, Mail Stop 166,
Hampton, VA 23681, USA.
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1.1. Large-scale structures in turbulent mixing layers

It is now well known that two main flow organizations co-exist in mixing layers: a
quasi-two-dimensional spanwise aligned vortex tube with streamwise aligned vortices
imposed on them. It has been proposed by Pierrehumbert & Widnall (1982) that the
same flow phenomena (i.e. pairing, amalgamation, tearing, etc.) govern the turbulent
mixing layer as well as its laminar counterpart. The visualizations of Brown & Roshko
(1974) are widely recognized as being the first to identify the large-scale spanwise
vortex structure in the plane mixing layer, while Konrad (1976) and Breidenthal
(1978) showed the first strong visual evidence of the streamwise aligned vortices.
Several theories based on instabilities, such as Kelvin–Helmholtz instability, have
been developed to explain the formation and evolution of the primary (spanwise)
and secondary (streamwise) vortical structures and are described in reviews by Ho &
Huerre (1984) and Liu (1989).

The visualization studies were continued by Bernal & Roshko (1986) with an
emphasis on the streamwise aligned vorticity. In particular they studied their origin,
interaction with the spanwise vorticity and their role in the development of the mixing
layer. It was found that the average spacing of the streamwise structures was 0.67
when normalized by the local mean spacing of the spanwise vortices and it was
independent of velocity ratio. It was also shown that the smaller-scale secondary
structures embedded in the spanwise rollers did not destroy their ‘coherence’. Sum-
maries of findings from several flow visualization experiments are found in a review by
Browand (1986). In this review it was suggested that the large-scale motions behave
as a dynamical system with relatively few degrees of freedom. This author further
speculated that the turbulent mixing layer exhibits chaotic behaviour in both space
and time. This appears to be the first suggestion that a dynamical system model, as
reported in Part 2 of the current study (Ukeiley et al. 1999), may prove fruitful in the
turbulent mixing layer.

Since the early flow visualization work, many other experimental studies of mix-
ing layers have been conducted to study the existence and origins of the vortical
structures. In a series of studies, Lasheras & Choi (1988), Meiburg & Lasheras
(1988) and Lasheras & Meiburg (1990) explored the initial conditions triggering
the instabilities that generate the streamwise aligned structures. The shear layer
examined was generated by a flat plate with a small-amplitude sinusoidal perturba-
tion in the spanwise direction to enhance the streamwise vortices for easier study.
Some of their conclusions are: vortex tubes were formed from the stretching of
weak perturbed vorticity in the braids of the Kármán vortices; redistribution, re-
orientation and stretching of the spanwise vorticity led to counter-rotating pairs
of three-dimensional streamwise vortex tubes; and this vorticity exists in an array
of closed vortex loops with alternating signs appearing in a staggered configura-
tion.

In another series of studies initiated in Bell & Mehta (1992) and continued in
Leboeuf & Mehta (1993), an attempt was made to ‘quantitatively’ establish the
presence and role of the secondary vortical structures in the mixing layer. They
postulated that the streamwise structure originated from streamwise vortices in the
upstream boundary layer. They found the circulation of the streamwise vortices to
be 10% of that of the spanwise vortices. Also, they found that the vortices initially
appeared in groups of three, then unwrapped to form a row of alternating-sign
streamwise vortices consistent with the findings of Meiburg & Lasheras (1988). They
showed evidence of the streamwise vortices in the self-similar region although their
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strength was decaying. It was concluded that one of the major effects of the streamwise
vortices was to produce higher Reynolds stress values.

Direct numerical simulations were used by Metcalfe et al . (1987) to study the three-
dimensional stability of two-dimensional vortical states. They found that forcing of
wavenumbers associated with pairing could keep the flow two-dimensional. They also
showed that the flow would reach a state with high levels of vorticity in the braids
if the pairing mode was the primary mode of forcing. It was also noted that for
three-dimensional simulations, streamwise aligned pairs of counter-rotating vortices
appeared even in the absence of pairing mode excitation. Their major conclusions were
that small-scale three-dimensional disturbances transform themselves into streamwise
vorticity, and there is evidence of the three-dimensionality of the flow in the spanwise
vortex cores.

Moser & Rogers (1992) studied a temporally evolving simulated turbulent mixing
layer for evidence of coherent structures. They found that in the self-similar (asymp-
totic) region there is a fundamental difference in the coherent structures found from
those in the transitional region or the laminar counterpart. They observed that in
this region there were neither pairings nor rib vortices. Their results showed that
the turbulence in the braid region is qualitatively the same as that in the roller.
These results strongly disagree with the findings of the flow visualization results. They
postulated that the experiments have stronger two-dimensional disturbances such as
those that would arise from the receptivity of the splitter plate tip. Their findings show
that a model for the mixing layer should not be based on the quasi-two-dimensional
structure since their only dynamical significance appears to be that they create a
strain and rotation-dominated regions and not the growth rate of the mixing layer.

1.2. Proper orthogonal decomposition

Lumley proposed the POD technique to objectively identify the coherent structure
or ‘dominant eddy’ in a turbulent flow. The method was first applied to the wake
behind a cylinder by Payne (1966). The results of this study showed that the energy
content in the dominant eddy was not significantly larger than that in subsequent
eddies. Bakewell & Lumley (1967) applied the technique to measurements taken in the
near-wall region of turbulent pipe flow. These results were more conclusive, showing
the dominant eddy to contain 90% of the total streamwise turbulent energy.

Following the original work of Lumley and coworkers, two relatively recent events
have lead to more studies utilizing POD. They are the advancement of computer
simulations and the development of more advanced data acquisition techniques.
Comprehensive reviews of applications of the POD can be found in Berkooz, Holmes
& Lumley (1993) and Delville (1995). Some of the findings for applications to
turbulent flows and extensions to the theory are detailed below.

The POD has been applied to most imaginable flow configurations. The earliest
applications of the POD in the turbulent boundary layer were by Moin (1984),
Herzog (1986) and Moin & Moser (1989). Their results all showed a dominant mode
containing up to 64% of the turbulent kinetic energy. Moin & Moser (1989) were
able to experiment with the domain over which they applied the POD, showing the
importance of spanning a relevant area. In the first application of the POD to free
shear flows Leib, Glauser & George (1984), Glauser, Leib & George (1987) and
Glauser & George (1987) applied the POD to the near-field region of a turbulent
axisymmetric jet, showing that the dominant eigenmode contained approximately
40% of the total turbulent kinetic energy. The complex flow field downstream of
a lobed mixer was studied by Ukeiley et al . (1992) and Ukeiley, Glauser & Wick
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(1993). In these studies the breakdown of the large-scale structure was tracked between
downstream locations. Manhart & Wengle (1993) applied the space-time-symmetric
fully three-dimensional version of the POD (not using Fourier modes in any direction)
to a large-eddy simulation of turbulent flow over a surface-mounted cube. Rajaee,
Karlsson & Sirovich (1994) applied the POD to measurements obtained in a forced
mixing layer, showing the dominant spanwise vortex which was excited by their
forcing.

The precursor to this work were extensive studies of applying the POD to data
collected in a plane mixing layer, conducted by Delville et al . (1993). In the initial
study using the POD, Delville, Bellin & Bonnet (1989) used data collected with a rake
of 21 single-component hot wires, placed perpendicularly to the plate. They found
that 70% of the mean-square streamwise velocity was recovered within the first three
modes. In this study a pseudo flow visualization technique (see Delville et al . 1988)
was also utilized to examine the contribution of the higher POD modes. Delville
(1994) compared applications of various levels of the POD, i.e. scalar and vectorial.
One finding was that, with higher degrees of complexity included in the kernel of the
POD equation, more essential flow physics was contained in the first POD mode. He
also postulated a scaling law and experimentally verified the Nyquist criteria for the
POD modes postulated by Glauser & George (1992).

One of the limitations of the POD approach is due to the notion of loss of phase.
When homogeneous directions are present within the flow, Fourier transforms are
used in these directions, leading to a globally non-local description of the POD modes
in physical space. Lumley (1981), Herzog (1986), Moin & Moser (1989) and Arndt,
Long & Glauser (1997) used a complementary technique ‘the shot-noise theory’ in
order to gain a description of the so-called ‘dominant structure’ in physical space.

Adaptations to the definition of the integral eigenvalue problem of the POD have
also flourished in recent years. Sirovich (1987) proposed the method of snapshots as a
numerical procedure which saves computational time for calculating the POD modes.
This method uses the correlation of instantaneous snapshots of the flow. This reduces
the order of the eigenvalue problem to that of the number of snapshots and not
the physical mesh. Glezer, Kadioglu & Pearlstein (1989) developed an extension to
the POD capable of dealing with flows in which long-term correlation measurements
are not possible. This extended POD was applied to a time-periodically forced plane
mixing layer and showed that as much as 78% of the information, collected from a
rake of 10 wires placed in a cross-stream orientation, was recovered with a three-mode
reconstruction. A technique which utilizes the linear stochastic estimation (LSE) to
extend the instantaneous velocity field for the POD was reported by Ukeiley, Cole
& Glauser (1993) and Bonnet et al . (1994). This technique utilizes the LSE to
estimate the instantaneous velocity at all positions of interest and then projects the
estimated velocity onto the eigenfunctions of the POD. This technique can be of great
interest to experimentalists because it allows the study of the time evolution of the
POD modes without having a priori knowledge of the full instantaneous flow field
simultaneously. A similar approach has been used by Faghani (1997) in a turbulent
plane jet configuration.

In studies to determine the universality of the POD eigenfunctions, Chambers et al .
(1988) applied the POD to a randomly forced solution of Burgers’ equation. Although
this application was not in a turbulent flow, the solutions to Burgers’ equation exhibit
turbulent flow characteristics, i.e. small viscous scales near the boundaries and large
outer scales. They found that the eigenfunctions in the core region were independent
of Reynolds number, while the bandwidth of the eigenvalue spectra increased with it.
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Following up this study, Liu, Adrian & Hanratty (1995) examined the eigenfunctions’
dependence on Reynolds number for channel flow. They found, at least for the cases
studied, that the eigenfunctions can be scaled to be applied at different Reynolds
numbers.

The spatio-temporal behaviour of three-dimensional coherent structures in a tran-
sitional spatially evolving boundary layer was studied by Rempfer & Fasel (1994).
They describe the dynamical coherent structures as pairs of eigenfunctions that con-
tain complete information on the spatial evolution. Their findings showed that the
first-order structures agreed well with structures observed in experiments. They were
also able to link the higher-order POD structures to the spike-like signals observed
in transitional regions.

1.3. Present study

This study can be broken down into several steps. The first step involves acquiring
and manipulating the experimental data. The data are obtained in a plane mixing
layer utilizing rakes of ‘X’ type hot wires, as described in § 2 and the cross-spectral
tensor is calculated. The procedures for this phase are outlined in § 3. The second step
applies the POD using the cross-spectral tensor from the first phase. This was done
by first utilizing the cross-spectral tensor for streamwise and cross-stream velocities
(§ 4), then using the full cross-spectral tensor for all three velocity components (§ 5).
To do this, the continuity equation and Taylor’s hypothesis are used to map the
frequency dependence of the two-point spectral tensor to streamwise wavenumbers.
The next step, as discussed in § 6, involves examining the dominant mode in physical
space by using a ‘shot-noise’ decomposition. This allows a quantitative analysis of
the large scales and a visual representation of their interactions in the flow. The
final step, to be discussed in Part 2 of this paper, utilizes the eigenfunctions from
step 2 as a basis set to develop a low-dimensional dynamical system model for
the mixing layer. This is achieved by using the eigenfunctions from the POD in
a Galerkin projection to yield a set of ordinary differential equations (ODE) for
each streamwise/spanwise wavenumber pair kept in a given truncation (see Holmes,
Lumley & Berkooz 1996). Several versions of the model are presented in Part 2 for
severely truncated systems. The temporal dynamics are then studied through spectra,
time histories of the projection coefficients of the POD modes and velocity vector
plots.

2. Experiments
The data used for this study were acquired experimentally in the fully developed

region of a two-stream plane mixing layer. The wind tunnel used in this study was a
standard open loop facility designed for subsonic flows. The flow commences at an
inlet box then flows into two streams through two different head loss devices which
are followed by fine mesh screens. It then contracts down as it enters the test section.
Next, the flow goes through a diffuser, then crosses the fan and finally exits through
the silencer. A schematic of the facility is shown in figure 1.

The coordinate system chosen has x1 (or x) as the streamwise, x2 (or y) as the
cross-stream and x3 (or z) as the spanwise direction. The zeros are taken to be
at the trailing edge of the splitter plate for x and the centre of the test section
for both y and z, respectively. The test section is rectangular with dimensions of
30×30×120 cm. The mixing layer is created by a steel flat plate splitting the streams.
The velocity ratio between the streams (Ua = 41.7 and Ub = 22.5 m s−1) is 0.59



96 J. Delville, L. Ukeiley, L. Cordier, J. P. Bonnet and M. Glauser

Splitter plate

Fi
lt

er
s

H
ea

d 
lo

ss
 d

ev
ic

e

1.2 m long, 30 cm¬30 cm square test section

y
x

z

Ua = 41.69 m s–1

Ub = 22.51 m s–1

Figure 1. Schematic of wind tunnel.

Figure 2. Placement of rakes in the wind tunnel.

with an average convective velocity Um = (Ua + Ub)/2 of about 34 m s−1. For
more details on the facility the reader can refer to Bellin (1991). The external levels of
turbulence are less than 0.3%. The boundary layers on the flat plate are fully turbulent
with a momentum thickness θ ' 1 mm. Previous studies have shown that at the
streamwise location where the measurements were taken, 600 mm downstream of the
splitting plate, the similarity state was obtained for the mean velocity profiles with an
expansion factor σ being of the order of 43. At this location, the vorticity thickness
δω was of the order of 27.6 mm. The passage of the quasi-two-dimensional large-scale
structure, monitored at the edge of the mixing layer (y/δω ' 0.5) is characterized by
a typical frequency fp that leads to a typical Strouhal number Sω = fpδω/Um of order
0.3.

The velocity time series data were acquired through the use of two ‘rakes’ of
hot-wire probes. Each array contained 12 probes in an ‘X’ configuration spaced by
∆y = 6 mm (i.e. ' δω/4.6). The rakes were aligned with the plate along the normal
direction and spanned from approximately −0.5Ly to +0.5Ly , where Ly ' 3 δω ,
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with no probes being truly at the centre. Figure 2 shows the placement of the two
rakes in the facility. Two separate experiments were performed: the probes were first
orientated to measure the u and v components of velocity (hereafter denoted the
UV -experiment), then reorientated to measure u and w components of velocity (the
UW -experiment). The experiments were conducted in an identical fashion, with one
rake at the same fixed spanwise location and the other traversed through 32 equally
spaced spanwise separations. The separation step, ∆z , was 4.2 mm which is of the
order of the Taylor micro-scale. The total distance spanned in the z direction was
Lz = 135 mm which is approximately 5 times the local vorticity thickness. In each of
the experiments, eight identical independent runs were performed, where the data were
collected with the moving rake traversing through the 32 spanwise locations. In the
UV -experiment, 16 runs were conducted; however, it was determined that the statistics
did not vary significantly if only eight runs were utilized. For each separation of every
run, seven sets of 10 240 data points per velocity component were taken. The 10 240
data points were then split into blocks of 1024 points. This technique yielded 8×7×10
independent blocks which is the number of samples used in all the time averages. The
total amount of data collected for each experiment was approximately 3.3 Giga Bytes.

The rakes and probes were constructed at the CEAT; specifications and dimensions
can be found in Bellin (1991) and Delville (1995). Briefly, the probes are moulded
out of an epoxy with broaches inserted in them to support the sensing wire. The
actual sensing wire is tungsten with a diameter of 2.5 µm and a sensing length of
approximately 0.5 mm. This yields an l/d ratio of 200. The rakes were made from
an etched circuit board with grooved slots where the probes are soldered into place.
By using probes in an ‘X’ configuration one can obtain two velocity components
simultaneously in the plane defined by the sensing wires. Each of the wires, numbered
ni, will essentially resolve the component of velocity normal to its direction (uni). It is
necessary to take into account the actual orientation of the wires to the mean flow.
The law utilized in this study for taking implicitly this into account is similar to that
of Collis and Williams, as presented in Bruun (1995), and is written for each wire i as
follows:

e2
i (Twi − Tf) =Ai(α) +Bi(α)u

Ni

ni , (2.1)

where ei is the voltage, Twi is the temperature of the wire, Tf is the temperature
of the flow, and Ai(α) and Bi(α) are fourth-order polynomials in α, where α is the
direction of the flow relative to the probes. The rakes of probes were calibrated
in a separate rectangular jet facility with a very low core turbulence intensity. The
rakes are traversed over nine angles from +30◦ to −30◦ with velocities ranging
from 20 to 50 m s−1 and temperature variations. This technique leads to a system
of equations for (2.1), which is then solved through an iterative least-squares matrix
method.

A set of 48 constant temperature anemometers (CTA T.S.I. 1750) drove the hot
wires. The temporal averaged (1 Hz low-pass filtered) and the fluctuating parts
(1 Hz high-pass filtered) arising from the anemometers were, after proper amplifi-
cation, acquired independently (12 bits ADC). For all of the experiments performed,
signals were simultaneously sampled at a sampling frequency fs=10 kHz and low-
pass filtered at 5 kHz. As stated above the fluctuating data were broken into blocks
of 1024 samples. This leads to a frequency resolution of approximately 10 Hz and a
total time for each block of 0.1 s which contains approximately 40 structures based
on the characteristic Strouhal number of the mixing layer measured at the streamwise
location where experiments were performed.
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3. Spectral and correlation tensors
From the experimentally measured data the cross-spectral tensor (Ψij(y, y

′; f, kz),
that is the direct double Fourier transform of the correlation tensor Rij(y, y

′; τ, δz) =
〈ui(y, z, t)uj(y′, z+δz, t+τ)〉) is calculated in a two-step process, by applying a spanwise
Fourier transform of the quasi-spectral tensor Sij(y, y

′; f, δz).

3.1. Calculation

In the first step the quasi-spectral tensor Sij(y, y
′; f, δz) was calculated as a function

of frequency f and for each spanwise separation δz . This was done by first applying a
direct time-to-frequency Fourier transform to all of the measured records of velocity
as follows:

ũi(y, z; f) =

∫ ∞
−∞
ui(y, z, t)e

−i2πftdt, (3.1)

where i = 1 and 2 for the first UV -experiment and i = 1 and 3 for the second
UW -experiment, i denotes (−1)1/2, f is frequency and t is time. The spectral tensor
was then calculated from the following equation:

Sij(y, y
′; f, δz) = 〈ũ∗i (y, z = 0; f)ũj(y

′, z = δz; f)〉, (3.2)

where 〈 〉 represents a ‘block’ ensemble average and ∗ denotes the complex conjugate.
As stated previously a block size of 1024 points with 560 independent blocks was used
for the average. These values were then smoothed using a 10% bandwidth moving
filter.

The next step involved applying a Fourier transform over the spanwise direction
to obtain the cross-spectral tensor as a function of kz . The amount of data collection
was reduced by a factor of nearly two because the spanwise direction was assumed to
be homogeneous and symmetric. This means that only positive separations, in z, were
measured and the negative separations were mapped by the following symmetry:

Sij(y, y
′; f, δz) = ±Sij(y, y′; f,−δz), (3.3)

where the minus is for i or j equal to 3 but not for both. Once the mapping to negative
separations in z was performed, a Fourier transform was applied over the spanwise
data for each frequency and (y, y′) pair. This Fourier transform can be represented
by the following equation:

Ψij(y, y
′; f, kz) =

∫ ∞
−∞
Sij(y, y

′; f, δz)e−i2πkzδzdδz. (3.4)

A weighting function γ(δz) was introduced in (3.4) in order to take into account
the effects due to the limited extent of experiments in the spanwise direction, and
γSij was Fourier transformed instead of Sij . The Gaussian window function γ(δz) =

1.84e−(3δz/Lz )
2/2 was used. After the application of the Fourier transform, the data

were smoothed in the kz-direction using a 20% bandwidth moving filter. In order
to examine the effect of spatial aliasing as discussed by Glauser & George (1992),
the calculation of Ψij(y, y

′; f, kz) was also performed with only 16 points to represent
the same spatial extent Lz (i.e. while doubling ∆z). It was found that there were no
significant differences in the spectral tensor.

3.2. Analysis

It is of interest to examine the correlation and spectral tensors of the original data to
get an idea of the integral scales and energy distribution. These quantities will become



Large-scale structures in a turbulent plane mixing layer. Part 1 99

4

3

2

1

0

2

1

0

0 1 2 0 1 2

0

0.5

1.0

1.5

2.0

0

0.5

1.0

210210

y+ = –0.97
y+ = –0.54
y+ = –0.11
y+ = 0.11
y+ = 0.54
y+ = 0.97

(a) (b)

(c) (d )

dz /dx dz /dx

Figure 3. Spanwise correlations for some selected y+ = y/δω locations. Plotted are
100× Rij(y+, y+; δz, τ=0)/∆U2: (a) R11, (b) −R12, (c) R22, (d) R33.

important when a truncation is defined for the POD-based dynamical systems model
discussed in Part 2 of this paper. At this stage, the spectra Ψij are known for ij=11,
12, 22, 33 and 13. The five cross-spectra are described for 512 discrete frequencies,
over 12×12 (y, y′) positions and for 32 spanwise wavenumbers kz . We will limit the
present analysis to a few significant correlations, by considering only configurations
where y = y′. This analysis is performed either in physical space, i.e. space–time
correlations, or in Fourier space, i.e. cross-spectra.

3.2.1. Correlation tensor

Figures 3(a) to 3(d) show the correlation tensor Rij(y, y; δz, τ) as a function of δz . The
correlations are normalized by the mean streamwise velocity difference ∆U = Ua−Ub.
The spanwise correlations are obtained by inverse Fourier transforming Sij (in the
time direction) and only considering τ = 0. These correlations are plotted for some
selected y+ locations within the mixing layer (where y+ = y/δω). Among the 12 y+

positions available, only six, symmetrically located relatively to the mixing layer axis,
are shown: two of them are in the external zone of the mixing layer (|y+| ' 1), two
of them are close to the mixing layer edge (|y+| ' 0.5), and the last two lie near the
mixing layer axis (|y+| ' 0.1). Whatever the plot, a strong symmetry of the correlation
tensor, relative to the mixing layer axis, can be noticed.

In the outer region of the mixing layer, one should note that the correlation remains
fairly constant in z. The level of the correlation remains low, but it should be recalled
that Rij is not a correlation coefficient, because ∆U is used for normalization. This
can be interpreted as the correlations in the outer region highlighting the quasi-two-
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dimensional spanwise organization of the flow, which one would expect to have a
large correlation length in the spanwise direction.

Near the mixing layer axis R11 decays rapidly when the spanwise distance increases,
with a negative dip for spatial separations of δz/δω in the range [0.5;1.5]. It is
interesting to note that the R33 correlation behaves very similarly to that of R11

although the negative dip is less pronounced and appears for greater spanwise
separations. For these correlations, this is indicative of the existence in this region of
a preferred organization in the spanwise direction. For all y locations, R22 appears
to hold its correlation better over the z-direction and never goes negative, indicative
of the primarily two-dimensional spanwise structure. R12 behaves as a cross between
R11 and R22, by decaying at rate similar to that of the u-component then levelling out
similarly to the v-component. For all of the plots, the energy level at the centre of the
mixing layer overwhelms the level at the outer regions of the mixing layer (compare
y+ ' ±0.1 to y+ ' ±1).

3.2.2. Spectral tensor

The results arising from the correlations analysis are indicative of the complex
organization of this flow. In order to add to the quantitative description of the
flow organization, two quantities are examined in this section: first, the spanwise
wavenumber spectra Bij(y, y

′ = y, kz) which are obtained by integrating Ψij over
frequency and, secondly, the Ψij spectra themselves.

Plotted in figures 4(a) to 4(d) is the modulus of selected spectra Bij for ij = 11, 12,
22 and 33, respectively.

In the outer region (i.e. |y+| >0.5), each spectrum, B11, B22 and B33, has the same
characteristic behaviour where the maximum energy is found at the smallest measured
spanwise wavenumber. For this wavenumber, the maxima of B11 and B22 are of the
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Figure 5. Ψii(y, y
′; f, kz): (a, c, e) outer region of the mixing layer (y = y′ = 0.5δω); (b, d, f) inner

region (y = y′ = 0.1δω).

same magnitude and about ten times greater than that of B33. Similarly to the analysis
of the correlations, this behaviour is indicative of the predominant flow organization
in the spanwise roller region. This is expected because the organization here is highly
two-dimensional (mostly involving the u- and v-components). B12 in this region is
relatively flat implying that the level of correlation is fairly continuous along the
spanwise structure.

In the inner part of the mixing layer (i.e. |y+| < 0.5) the spanwise spectra exhibit a
different behaviour depending on the velocity component under consideration. Span-
wise spectra B22 and B12 still have their maxima located at the smallest available
wavenumber. The energy of B22 at this wavenumber is then twice that of the other
spectra and drops off rapidly by wavenumbers kzδω ' 0.5, indicating that the pre-
dominance of energy associated with the v-component originates from the spanwise
organization. Spectra B11 and B33 have their maxima at wavenumbers kzδω ' 0.5 and
0.3, respectively. This representative maxima of energy for these components in the
mixing layer is not associated with the spanwise organization, but with a streamwise
flow organization, providing the typical streamwise scale is known to be of the order
of 2δω (e.g. Bernal & Roshko 1986). B12 has a much slower decay as brought in from
the u-component.
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Figure 6. Evolution of autospectra Ei(y; f): (a) E1, (b) E2, (c) E3.

In figure 5 the spectra Ψij(y, y
′ = y; f, kz) are plotted for two y-locations: near the

centre of the mixing layer and just past the edge of the mixing layer.
Near the centre of the mixing layer (y+ = −0.11) the u, v and w autospectra

have their maxima of energy at different wavenumber/frequency locations as seen
in figures 5(b), 5(d) and 5(f). For Ψ11, a dominant wavenumber in z (kzδω = 0.5)
and a dominant frequency (fδω/Um = 0.15) are obtained. This feature corresponds
to the two main flow organizations present in the plane mixing layer: large-scale
quasi-two-dimensional structures and streamwise aligned vortices. The maximum of
energy is located in a region near the intersection of these two wavenumbers. This
maximum is relatively broad band when compared with Ψ22. For this spectrum, the
footprint of the spanwise organization is strongly dominant; and the maximum of
energy is located at the lowest spanwise wavenumber measured. A sharp peak on the
frequency axis is found to be at fδω/Um = 0.3 which is approximately the typical
Strouhal number that is found for the two-dimensional large-scale structures passing
through the mixing layer (Browand & Ho 1983). The amplitude of the maximum of
Ψ22 spectrum is about ten times that of Ψ11; however, the integrated values remain
of the same order of magnitude as can be seen from the analysis of Bij .

In the outer region of the mixing layer, the autospectra for u, v and w present the
same characteristics as observed for the v-component near the centre of the mixing
layer (figures 5a, 5c and 5e). Only the footprint of the large-scale structures, i.e. a peak
in the frequency axis of fδω/Um ' 0.3, is observed. Note that the magnitude of Ψ22 is
greater than that of Ψ11 which is, in turn, greater than that of Ψ33. One would expect
the energy in the ww spectrum to be comparatively small in the outer region because
as stated before the flow organization in this region is mainly two-dimensional.

Figure 6 summarizes the evolution of the autospectra as a function of the y-
direction. The values plotted in this figure, Ei(y; f), can be obtained by integrating
the Ψij quantities over the spanwise direction. All of the trends of the y-direction



Large-scale structures in a turbulent plane mixing layer. Part 1 103

mentioned in the previous discussion of Ψij can easily be observed in this figure.
It has been found, in Delville et al . (1993), that evidence of the streamwise aligned
vortical structures can only be observed in the region of |y| 6 δω/2, yet evidence of
the spanwise organization can be observed in the spectra at all y-locations. However,
it should be noted that, for u near the centre of the mixing layer and w in the outer
region, the frequency pointed out corresponds to about half the typical Strouhal
number. Relating this to the observations of Metcalfe et al . (1987) where they argue
that the three-dimensionality originates from the centre of the spanwise vortex tubes,
one can extrapolate that the energy associated with these wavenumbers will play a
crucial part in achieving three-dimensionality in the dynamical systems model.

4. POD analysis
The proper orthogonal decomposition (POD), which is based on the Karhunen–

Loeve expansion (Loeve 1955), was proposed by Lumley (1967) as a non-prejudice
technique for studying the structure of turbulent flows. The derivation of the governing
equations can be found in many places, for example, Berkooz et al . (1993). A brief
summary is given below.

4.1. Definition

Lumley proposed that the candidate structure, φ, be selected so that it is the structure
with the largest mean-square projection on the velocity field. This projection process
maximizes the energy content of the candidate structure:

max
φ

〈|(u,φ)|2〉
(φ,φ)

(4.1)

where u is the instantaneous velocity field. The inner product is defined as (f, g) =∫
Ω
f(x)g∗(x)dx, where Ω is a space–time domain (Ω = D × T). Equation (4.1)

is normalized by (φ,φ) which removes its dependence on amplitude since we are
interested in the degree of projection and not the amplitude.

Maximizing this mean-square energy projection can be done by the calculus of
variations (Lumley 1981) or by defining a Hermitian operator (Berkooz 1991). This
leads to the following integral eigenvalue problem:∫

Ω

Rij(x, x
′, t, t′)ψj(x′, t′) dx′ dt′ = λψi(x, t), (4.2)

where the kernel is the velocity cross-correlation tensor, Rij(x, x
′, t, t′)=〈ui(x, t)uj(x′, t′)〉

and the eigenvalue, λ, is representative of the integrated turbulent kinetic energy. Since
Rij is a symmetric positive definite function, the solutions to (4.2) can be discussed
using the Hilbert–Schmidt theory (Lumley 1967).

One of the more interesting artifacts of the Hilbert–Schmidt theory is that an infinite
number of orthonormal solutions can be used to express the original instantaneous
velocity field ui(x, t) as

ui(x, t) =

∞∑
n=1

u
(n)
i (x, t), where u

(n)
i (x, t) = a(n)ψ

(n)
i (x, t), (4.3)

and

a(n) =

∫
Ω

ui(x, t)ψ
(n)∗
i (x, t) dx dt. (4.4)
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If a direction in the flow field is assumed to be statistically stationary or homoge-
neous, the POD reduces to the harmonic decomposition theorem (see Lumley 1967
or George 1988). This implies that the eigenfunctions are harmonic functions and
can be handled through Fourier analysis first. Introducing this Fourier transform
leads to a phase indetermination problem, where the description of the POD modes
becomes local in Fourier space and non-local in physical space. Retrieving the POD
modes in physical space is then limited by two points: first, the solution for the
integral in (4.4) implies that the velocity field is known at all locations simultaneously
(which cannot be done easily in an experimental approach) and, second, the ‘phase
indetermination’ has to be solved. Complementary techniques such as the shot-noise
decomposition (Lumley 1981) or dynamical models (Aubry et al . 1988) can be utilized
for determining the a, hence the reconstruction of the POD modes contribution by
using (4.3).

4.2. POD application to the mixing layer

The POD in the mixing layer was solved for two different cases. In the first application
Ψij(y, y

′; f, k3), where i = 1, 2 and j = 1, 2, is used as the kernel for the integral
eigenvalue problem. Because of spanwise homogeneity the third component (w) is
more or less uncoupled from u and v. For example correlations such as R13(y, y

′; 0, 0)
are zero. Given this it is expected that taking into account only u and v leads to
interesting results, in terms of flow organization. This decomposition will be called
2.5D-POD and is only briefly discussed in this communication. Details can be found
in Delville & Ukeiley (1993). It should be noted that in this first decomposition
there is no implementation of Taylor’s hypothesis. In the second application, which
is discussed in § 5.2, Taylor’s hypothesis and the continuity equation are used to build
the full spectral correlation tensor Ψij(y, y

′; k1, k3) for i = 1, 2, 3 and j = 1, 2, 3, which
is then decomposed. This last decomposition will be called 3D-POD. Note that in
the following, k1 (or kx) and k3 (or kz) correspond to the streamwise and spanwise
wavenumbers, respectively.

The use of Taylor’s hypothesis to map the frequency to streamwise wavenumbers
involves implicitly two assumptions: first the existence of a convection velocity and
secondly homogeneity in the streamwise direction. The way the convection velocity
is used will be detailed and discussed in § 5.1. The suggested local homogeneity in
the streamwise direction is an approximation and can be subject to criticism. It can
be shown that with this assumption no expansion can be found for the downstream
evolution of the flow. However, if one remains in a local framework, a useful ap-
proximation can be obtained for at least two aspects of the flow: the typical scales
and typical organization. Checking the influence of this assumption on the results
obtained would require measurements involving streamwise spatial separations. Al-
though it is not possible to examine this assumption with the database reported
in this study, work with numerical simulations have been conducted by Cordier,
Delville & Tenaud (1997). In that study the space–time correlations obtained directly
from the simulation were found to be in agreement with the experimental ones ob-
tained by the process involved in the present paper: the only difference between the
two sets of correlations was that, for downstream separations, the transversal extent
(y-direction) of constant correlation contours is found to be symmetric when homo-
geneity is assumed while this varies with downstream distance when homogeneity is
not.
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Figure 7. Eigenspectra (a) λ(1), (b) λ(2), (c)
∑

n λ
(n) for 2.5D-POD.

4.3. Analysis of 2.5D-POD modes

In the mixing layer flow studied here, the time ‘direction’ is statistically stationary and
the spanwise direction is assumed to be locally homogeneous. The cross-correlation
tensor Rij(x, x

′, t, t′) in (4.2) is then decomposed using a Fourier transform resulting
in

Rij(x, x
′, t, t′) =⇒ Ψij(y, y

′; f, k3), (4.5)

where Ψij is the cross-spectral tensor dependent on frequency and spanwise wavenum-
ber. Details of the calculation of this quantity were discussed in § 3.1. The integral
eigenvalue of (4.2) now becomes∫ Ly/2

−Ly/2
Ψij(y, y

′; f, k3)Φ
(n)
j (y′; f, k3) dy′ = λ(n)(f, k3)Φ

(n)
i (y; f, k3), (4.6)

where Φ1 (or Φu) and Φ2 (or Φv) are now frequency and spanwise-wavenumber
dependent eigenfunctions, λ(n)(f, k3) represents the eigenspectra, and y denotes the
remaining inhomogeneous direction. This equation, in the case of the 2.5D-POD is
solved for i = 1, 2 and an implicit summation exists over j = 1, 2.

The shape of the dominant eigenvalue spectrum λ(1)(f, k3) as shown in figure 7(a)
is very similar to the union of the two individual Ψii measured near the mixing layer
axis for y+ = −0.11 (figure 5). The peak at fδω/Um = 0.3 as seen in Ψ22 and less
pronounced the maximum at kzδω = 0.5 of Ψ11 (both near the centre of the mixing
layer axis) are discernible in figure 7(a). A juggling between the influence of the v- and
u-components can be seen: v dominates in the first few spanwise wavenumbers and u
in the others. The ‘dominant mode’ can then be split into two spanwise wavenumber
domains: the lowest wavenumbers can be related to the large quasi-two-dimensional
structures for which v is found dominant, and the higher wavenumbers where the
three-dimensional aspect of the organization of the flow is carried essentially by the
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u component. This suggests that the ‘coherent structure’ is a combination of the two
main organizations observed in this flow.

When the first POD mode is integrated over f, 80% of its energy is contained in the
smallest kz . The overall contribution of the first mode to the energy can be obtained
when integrating over all the wavenumbers and frequencies. The first mode of the
POD plotted in figure 7(a) contains about 53% of the energy (80% for the summation
over the first three modes). The values obtained here are greater than those from the
vectorial PODuv where no spanwise separation is examined. In that case, only 41% of
the energy is contained in the first mode and 71% in the first three modes (Delville
1994). This result confirms that taking into account more information from the flow
(here adding spanwise dependency) leads to a first POD mode that better represents
the flow. The good representation of the first mode can also be found by comparing
the eigenvalue for the first mode in figure 7(a) to the summation of all the modes of
the POD plotted in figure 7(c). This makes it clear that the first mode contains most
of the information in the energy-containing (f, kz) pairs.

It is interesting to note that in figure 7(b) the streamwise organization dominant
for the second POD mode is contrary to what occurs for the first mode. For λ(2) the
peak in f is at the same frequency as for λ(1); however, the peak in kz is located at
kzδω = 0.25. It has been shown (see Delville et al . 1993) that this typical wavenumber
corresponds to the characteristic spanwise wavenumber that is observed near the edges
of the mixing layer. This indicates that the second POD mode captures information
preferentially from these regions. Also note that the first mode of the POD carries
information from this region as well.

In order to be able to give the ‘coherent structure’ a physical representation (i.e.
in space/time and not in the wavenumber/frequency domain), it is necessary to
use complementary tools (e.g. shot noise as will be discussed in § 6 or dynamical
systems model which will be discussed later in Part 2). This is due to the fact
that by using the cross-spectral tensor as the kernel of the eigenvalue problem, the
phase in the directions where the Fourier transforms are applied is lost. However, the
information about the phase in the inhomogeneous direction y can be accessed because
it is contained in the eigenfunctions. Nevertheless, we can hope to find topological
information about the organization of the structure in the inhomogeneous direction
as well as the distribution of scales from examining the eigenfunctions. This has been
done and reported in Delville & Ukeiley (1993) for the 2.5D-POD. In § 5.2 the shape
of the eigenfunctions will be discussed for the application of the 3D-POD.

5. Application of continuity and 3D-POD
In this section the application of the continuity equation to the cross-spectral tensor

is described, along with the formulation and results of the 3D-POD.

5.1. Estimation of the entire spectral tensor

In order to fill in the non-measured parts of the correlation tensor, the continuity
equation was used in conjunction with Taylor’s hypothesis. In the experiments Ψ11,
Ψ12, Ψ22, Ψ13 and Ψ33 were measured as a function of y, y′, f and k3. First Taylor’s
hypothesis was used to map these quantities to Ψ11, Ψ12, Ψ22, Ψ13 and Ψ33 in terms
of y, y′, k1 and k3. The only way to calculate Ψ23 is to make use of the continuity
equation. The remaining terms (i.e. Ψ21, Ψ31 and Ψ32) were calculated using the
following symmetry:

Ψij(y, y
′; k1, k3) = Ψ∗ji(y

′, y; k1, k3). (5.1)
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Taylor’s hypothesis is invoked to map the data from frequency to streamwise
wavenumber: k1 = −f/Uc, which assumes that the turbulence is frozen and being
convected with the mean streamwise convection velocity. This leads to the following
relations:

Ψij(y, y
′; k1, k3) = UcΨij(y, y

′; f, k3). (5.2)

Defining a convection velocity is a non-trivial task and remains controversial (e.g.
Zaman & Hussain 1981, or Leboeuf & Metha 1995). The average convective velocity
Um could be used, but this value must be too large considering the drag shown in
the flow patterns. Whatever the value chosen for Uc, the following question is also
present: does this convection velocity need to be the same for all the flow scales?

The following paragraphs describe an approach to address the above question
based on the use of the continuity equation.

The continuity equation for an incompressible turbulent field can be expressed in
terms of the fluctuating velocity as follows:

∂u′i
∂xi

= 0. (5.3)

This equation can be written in terms of the correlation tensor Rij by

∂Rij
∂xi

= 0. (5.4)

The spectral tensor can be represented as the Fourier transform of the correlation
tensor as shown in (3.4) so that the continuity equation becomes

2πik1Ψ1j +
∂Ψ2j

∂x2

+ 2πik3Ψ3j = 0. (5.5)

Equation (5.5) allows one to express Ψ3j as

Ψ3j =
1

2πk3

(
−2πk1Ψ1j + i

∂Ψ2j

∂x2

)
. (5.6)

In terms of the measured quantities Ψij , this equation can be written for j = 2:

Ψ32 =
f

Uck3

Ψ12 +
i

2πk3

∂Ψ22

∂x2

. (5.7)

Considering the wavenumber k3 =0 (i.e. considering the large-scale two-dimensional
spanwise aligned motion), the convection velocity arising from (5.7) can be estimated
for each (y, y′) pair and frequency by using

uc(y, y
′; f)

∂Ψ22

∂x2

(y, y′; f, k3 = 0) = 2πifΨ12(y, y
′; f, k3 = 0). (5.8)

If one assumes that the convection velocity Uc is constant across the mixing layer
(see Zaman & Hussain 1981), an average convection velocity Uc(f) can be obtained
by solving (5.8) using a least-squares approach:

Uc(f) =

∫ Ly/2

−Ly/2

∫ Ly/2

−Ly/2
∂Ψ22

∂x2

(y, y′; f, k3 = 0)× 2πifΨ12(y, y
′; f, k3 = 0) dy dy′∫ Ly/2

−Ly/2

∫ Ly/2

−Ly/2

(∂Ψ22

∂x2

(y, y′; f, k3 = 0)
)2

dy dy′
. (5.9)

This quantity, plotted on figure 8 as the ratio Uc/Um, is close to 0.8 for reduced
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Figure 8. Frequency evolution of spatially averaged convection velocity.

frequencies fδω/Um in the range [0.1; 0.7]. This shows that although the convective
velocity might not be a constant for all scales, for the scales of interest in this paper
and Part 2 it is approximately constant. Hence, the global convection velocity Uc has
been chosen to be independent of the frequency (or streamwise wavenumbers) and
assumed to be Uc = 0.8Um.

The method used here to estimate the full spectral correlation tensor does not
ensure that the continuity relationship is satisfied for the entire system. In fact, the
chosen procedure guarantees that the continuity equation will be violated. However,
by using this method only for estimating Ψ32, a relatively small term, one can hope
the violation is small. Once the POD is solved, the eigenfunctions will be checked to
verify the continuity relationship (see § 5.2.1).

5.2. 3-D POD

Now that all of the components of the correlation tensor have been acquired, the
application of the POD can be expanded. For the second application of the POD,
denoted 3D-POD, Ψij(y, y

′, f, k3) was mapped to Ψij(y, y
′, k1, k3) through the use of

Taylor’s hypothesis, as discussed in § 5.1. In this case i = 1, 2, 3 and j = 1, 2, 3, and the
components Ψ23 and Ψ32 were solved from an application of the continuity equation.
The resulting Fredholm equation is then∫ Ly/2

−Ly/2
Ψij(y, y

′; k1, k3)Φ
(n)
j (y′; k1, k3) dy′ = λ(n)(k1, k3)Φ

(n)
i (y; k1, k3). (5.10)

Now the eigenvalues and eigenfunctions are streamwise and spanwise wavenumber
dependent.

5.2.1. Continuity of POD modes

In this section the use of only a single equation from the continuity relationship
will be justified by verifying that the POD eigenfunctions satisfy the continuity rela-
tionship. Since the eigenfunctions themselves are representative of an incompressible
flow, they should be divergence free. The continuity equation for the eigenfunctions
can be written as dΦ(n)

i /dxi = 0. Since the eigenfunctions that are solved for in (5.10)
are in Fourier space, this equation can be rewritten as

D(n)(y; k1, k3) = 2iπk1Φ
(n)
1 +

dΦ(n)
2

dx2

+ 2iπk3Φ
(n)
3 = 0. (5.11)

Figure 9 is a typical plot, for the first POD mode, of the maximum for all y
of |D(y; k1, k3)|, the solution of (5.11), and is indicative of the divergence of the
eigenfunctions. The values in this plot are normalized by ∆U/δω and are plotted as
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(n) for 3D-POD.

a function of kx and kz . The maximum value of the divergence has been found to be
approximately 2% with the average ' 0.6%. This result is quite satisfactory for the
present application.

In hindsight this result is not that surprising if one considers that the only term cal-
culated from the application of continuity was Ψ32. In general this term’s contribution
to the spectral tensor is small, thus it should only introduce a small error.

5.2.2. Eigenvalues and eigenfunctions

As with application of the 2.5D-POD, the convergence of the modes was found to
be rapid. This is evident when comparing in figures 10(a) and 10(c) the first POD
mode to the summation of all the modes or the difference of scales between mode 1
and mode 2 in figures 10(a) and 10(b). The first mode contained 49% of the turbulent
kinetic energy with 99% being represented by the summation of the first seven modes.
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The shape of
∑

n λ
(n)(kx, kz), as shown in figure 10(c), is very similar to that of the

2.5D-POD case in figure 7(c). The most observable difference is that the values in the
low spanwise/streamwise wavenumber corner (the region representative of the centre
of the mixing layer bounded by kxδω ' 0.2 and kzδω ' 0.5 of figure 5b) appear to
be greater for the 3D-POD (i.e. 6× 10−4 compared to 4× 10−4). If one considers that
the eigenvalues are the integrated energy over the domain, this shows that the main
contribution from the third velocity component should be in this low-wavenumber
area. This is consistent with the results obtained by Zheng & Glauser (1991) where
it was found that the addition of the third component highlighted information that
was characteristic of the secondary structures. The shape of the dominant mode
λ(1)(kx, kz) in figure 10(a), as with the 2.5D-POD application, exhibits all of the
main characteristics shown by the summation of all the POD modes. The shape of
λ(2) appears to be significantly different from that for the 2.5D-POD application,
where it was found to be more representative of the spanwise organization. For this
application, the shape is very similar to that of the first mode, but with a more
broad-band peak at the lowest spanwise wavenumber.

The following discussion concentrates on the behaviour of the eigenfunctions for
the first mode of the POD only. Specifically, the spanwise wavenumbers pointed
out in § 3.2.2 are analysed: kz3 ' 0.3δ−1

ω , kz5 ' 0.5δ−1
ω and kz1 ' 0.1δ−1

ω . One should
recall that kz3 is typical of the organization near the edge of the mixing layer while
kz5 is typical of the organization near the centre of the mixing layer. The smallest
spanwise wavenumber in this experiment kz1 is also examined in order to get an idea
of the large-scale two-dimensional behaviour of the ‘structure’ (i.e. corresponding to
the largest spanwise extent). The modulus of the eigenfunctions, which are complex
functions, are plotted on figure 11, weighted by the square root of the corresponding
eigenvalue. The shapes of Φ1 and Φ2 exhibit similar trends to those observed for the
2.5D-POD reported in Delville & Ukeiley (1993). All the plots of this figure exhibit
a symmetry relative to the mixing layer axis (y = 0) as could be inferred from the
symmetric nature of the energy profile. Large differences can be found in the behaviour
of the eigenfunctions Φ1 for the selected wavenumbers. For this eigenfunction, the
three spanwise wavenumbers considered exhibit a quite different behaviour. When
looking at kz1, three maxima can be found: one primary maximum on the mixing layer
axis and two symmetrical secondary maxima located at |y+| ' 0.7. For the higher
spanwise wavenumber, only the primary maximum on the mixing layer axis remains.
These maxima are located at the centre of the mixing layer at kxδω ' 0.15 and near
the edge of the mixing layer at kxδω ' 0.3. Whatever the spanwise wavenumber, for
Φ2 there is only one maximum, located in the centre of the mixing layer at kxδω ' 0.3.
It was observed for this eigenfunction that, for each spanwise wavenumber considered,
the order of magnitude of the imaginary part remains small when compared to the
modulus; this implies that the v-component of the structure remains in phase over
the y-direction whatever the spanwise wavelength considered. The shape of Φ3 for
kzδω ' 0.1 exhibits two maxima located at kxδω ' 0.3. In the y-direction the maxima
are located just on either side of the mixing layer axis. This figure also indicates that,
for larger values of the spanwise wavenumber, Φ3 behaves similarly to Φ2.

A quite simple physical scheme for the organization of the flow field can be given
in order to explain these features. The three local maxima observed for Φ1 are due
to the mixing of the symmetric properties of the real part and the antisymmetric
properties of the imaginary part of the eigenfunctions that can be induced from
the ‘large-scale behaviour’ of the flow. The large-scale organization can be related,
for this flow following conventional conditional approaches, to an increase of the
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Figure 11. Modulus of eigenfunction Φ(1)
i for 3D-POD: (a–c) Φ1, (d–f) Φ2, (g–i) Φ3.

velocity in the high-velocity side of the mixing layer associated with decreases of
velocity in the low-velocity side of the mixing layer. This organization can then be
related to the spatial phase opposition between the two external parts of the mixing
layer. This behaviour expressed in terms of the eigenfunctions can be translated into
anti-symmetrical behaviour (odd function in y). In the complex space, this behaviour
is related to a dominating odd imaginary part (in the y-direction); however the
modulus as plotted in figure 11 appears as positive maximum. The primary maxima
at kxδω ' 0.15 corresponds to the symmetric real part of the eigenfunctions. This
symmetry is related to the maximum of energy located on the axis of the mixing
layer as discussed earlier. One can, in this context, relate the behaviour of Φ1 for
the selected spanwise wavenumbers to the following characteristics. For kz = kz3 or
kz = kz1 there are two distinct frequency domains. In the area of fδω/Um = 0.15 the
flow organization associated with the energy on the axis is observed; while in the
range of kxδω = 0.3 the characteristics associated with the passage of the quasi-two-
dimensional organization is observed. However, for higher spanwise wavenumbers
(i.e. kz = kz3) only the organization associated with the energy on the axis is observed.
In the same vein the two maxima noticed for Φ3 are actually of opposite sign if their
real and imaginary parts are examined. Using geometric arguments, one can think of
streamwise vortex tubes as represented by opposing vectors in the z-direction.

5.2.3. Energy profiles

The contributions from the first two modes to the energy profiles are shown in
figure 12. The first mode represents the profiles well for all the cases. It is particularly
efficient for v′v′ and for u′v′ as well. Considering the u′v′ Reynolds stress, it is
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Figure 12. Contribution of the POD modes to the Reynolds stresses for 3D-POD.

interesting to point out that in several previous comparable studies involving kx and
kz dependence, (e.g. Moin & Moser 1989 and Glauser & George 1987) the Reynolds
stress was found to be very representative, even leading to an over-estimation of the
first or second mode. In this study, however, this behaviour was not observed. It is
evident from these figures that the convergence is more rapid near the centre of the
mixing layer. One would expect this since the decomposition is based on energy and
areas of high energy will converge the most rapid.

5.2.4. Reconstruction of spectra

Figure 13 presents the contribution of the first 3D-POD mode to the autospectra
at y = 0.1 δω and y = 0.5 δω for u, v and w, respectively. The u and v autospectra
show the same global features as the original autospectra plotted in figure 5. This
demonstrates the effectiveness of the POD for representing the important features
(on an energy-weighted basis) of the flow. For the autospectra of w, the overall
characteristics at wavenumbers greater than kxδω ' 0.3 seem to be well represented
by the first POD mode. However, in the low spanwise/streamwise wavenumber corner
the energy is significantly under represented. These global features are consistent with
the results from the examination of the eigenspectra (figure 10) which showed that
the first mode represents the energy contained in the flow accurately.

6. Reconstruction in physical space
In the previous Sections, it has been shown that the spectral distribution of

dominant scales characteristic of the flow organization can be retrieved from the
first POD mode. However, the phase indetermination due to the use of Fourier
transforms in the homogeneous and stationary directions implies that a physical
space description of this mode cannot be obtained directly. An explicit physical
description of the dominant mode can only be obtained in the y-direction, for which
the POD was applied. For directions x and z this description is known only in the
spectral domain. Therefore this description is globally non-local in physical space.
The aim of this Section is to provide a physical description of the dominant POD
mode, i.e. Φ(1)

i , in terms of space variables (x, y, z) following Lumley (1981).
Two approaches can be used in order to gain a description in physical space. A
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‘static’ description of the dominant mode can be obtained by using a complementary
theory: the shot-noise theory. This specific approach will be discussed and developed
in the following Sections. An alternative way is to build, from the dominant eigen-
functions, a low-order model by use of a Galerkin projection of governing equations
onto the POD modes, leading to a low-order dynamical system (through a set of
ODEs). In this case, these equations themselves drive the missing spectral phase in-
formation. However, additional hypotheses concerning spectral symmetries, influence
of neglected higher modes, and relationship with the ‘mean’ flow will be required.
By this Galerkin projection procedure, a dynamical description of the flow is also
obtained, and this approach will be addressed in Part 2.

6.1. Phase indetermination

To describe the dominant mode in physical space, it is necessary to obtain a description
of the expansion coefficients appearing in (4.3). In the case of the 3D-POD, these
equations can be written by considering only the first mode (1):

ui
(1)(x, y, z) =

∫
a(1)(K )Φi

(1)(y;K ) exp(2iπ(K · X )) dK , (6.1)
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where K = (kx, kz) and X = (x, z). Coefficients a(1)(K ) are obtained from

a(1)(K ) =

∫
ũi(y;K )Φi

∗(1)(y;K ) dy, (6.2)

where ũi(y;K ) is the Fourier transform of the flow field in the homogeneous directions
x and z.

Considering the relation 〈a(1)(K )a(1)∗(K )〉 = λ(1)(K ) one can estimate the modulus
of a(1) as the square root of the eigenvalue. The same consideration was used in the
normalization describing the eigenvectors in the previous Section (e.g. see figure 11).

However, it can easily be shown that if the eigenfunction Φi(y;K ) is a solution of
the eigenvalue problem, any function such as Φi(y;K )eiΘ(K ) is also solution of this
problem (note that the phase function Θ introduced is independent of the velocity
component i). Therefore a phase indetermination exists and needs to be solved.

6.2. ‘Shot-noise’ decomposition

Several methods used to solve the phase indetermination involve a generalization of
the ‘shot-noise’ theory initiated by Rice (1954). This theory provides a formalism to
estimate the coefficient a(1). In this decomposition, the random field is considered as
being built up from non-overlapping characteristic eddies randomly distributed in the
homogeneous directions. The shot-noise decomposition can be written

ui
(1)(x, y, z) =

∫
Ui(X − X ′)g(X ′) dX ′. (6.3)

In this equation, the deterministic functions Ui sought are representative of the
large eddies in physical space and g is a random function representative of the
distribution (amplitude and occurrence) of these eddies in the homogeneous directions.
By comparing the two descriptions of the random field (equations (6.3) and (6.1)),
considering the Fourier transform of these equations and using the convolution
theorem, it can be easily shown that

Ũi(y;K )g̃(K ) = a(1)(K )Φ(1)
i (y;K ). (6.4)

By considering the product with its conjugate of the previous equation, and intro-
ducing an ensemble average and Eg(K ), the spectrum of the distribution function of
g (equation (6.6)), the spectral description of Ui can be obtained:

Ũi(y;K ) =

[
λ(1)(K )

|Eg(K )|
]1/2

|Φ(1)
i (y;K )| eiΘ(K ). (6.5)

The dominant structure reconstruction could be obtained in physical space by the
inverse Fourier transform of (6.5), providing Eg is known.

Lumley (1981) proposed developing the distribution function g as an infinite sum
of Dirac functions with amplitude Aα, randomly distributed in the homogeneous
directions:

g(X ) =
∑
α

Aαδ(X − X α). (6.6)

With the hypothesis that consecutive events are non-overlapped and the amplitude
and distribution of g are not correlated, it can be shown that the spectrum Eg is real,
positive and independent of the wavenumbers K :

Eg(K ) = 〈A2
i 〉/µ,
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where µ is the average time delay between two successive events. One of the con-
sequences of this result is that Eg , being constant, does not affect the shape of the
modulus of U (equation (6.5)). However, the phase is still not known.

6.2.1. Phase reconstruction for dominant structures

Three methods have been used to compute the phase information: (a) three-
point correlations; (b) compactness in physical space; and (c) a ‘spectral continuity’
description of the dominant structure in Fourier space. The first two approaches were
used by Herzog (1986) and Moin & Moser (1989) respectively. The third one, which
has been chosen for the present work, will be detailed below.

This technique, also used by Moin & Moser (1989), consists of considering that,
for neighbouring wavenumbers, the Fourier transform of the characteristic structure
evolves slightly. Considering the inhomogeneous direction (y) and a single homoge-
neous direction, for example (z), this hypothesis can be written for two contiguous
wavenumbers kza and kzb: ∫

Ũi(y; kza)Ũi

∗
(y; kzb) dy

(λ(1)(kza)λ
(1)(kzb))

1/2
' 1. (6.7)

This method leads to the phase determination relative to an additive constant that
can be determined (but not its sign) by considering that the characteristic structure
has to be real (i.e. the phase should be zero when kz → 0). This method will be used in
the following Section in order to get a description of the dominant mode in physical
space.

6.3. Application of the ‘shot-noise’ theory

In the present study, the spectral continuity method is used to characterize the phase
function Θ and to describe the dominant structure in physical space. This specific
approach was selected by considering several points. Moin & Moser (1989) have
shown that the different approaches (spectral continuity, compactness or three-point
correlations) lead globally to the same ‘picture’ of the dominant structure. The spectral
continuity does not involve any statistical model for the spectral representation of the
distribution function g used to describe the three-point correlations. It uses fewer a
priori symmetries of the flow field than the spatial compactness does. It is based on,
in some sense, a physical concept from which the spectral description of the dominant
structure has to be ‘smooth’.

In order to solve this problem, equation (6.7) is generalized to two spectral directions
kx and kz . For each pair of wavenumbers K , the neighbouring wavenumbers K ′ lying
in the range [K ± ∆K ], have to be such that the inner product

3∑
i=1

∫
Ũi(y;K ) Ũ∗i (y;K ′) dy

is as close as possible to the eigenvalues square root product: (λ(1)(K )λ(1)(K ′))1/2.
This problem is solved by using the following iterative procedure:

(a) the candidate function Ui is chosen such that

Ũi(y;K ) =
[
λ(1)(K )

]1/2
Φi

(1)(y;K );

(b) the phase function is initialized to zero for wavenumbers K = 0;
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Figure 14. Velocity vector fields, of the dominant mode, viewed in (x, y)-planes for various
spanwise locations and plotted in a framework following the flow using the convective velocity Uc.

(c) for each pair K , one calculates the average over (±∆K) of the scalar products:∫ +∆K

−∆K

3∑
i=1

∫ +Ly/2

−Ly/2
Ũi(y;K ) Ũi

∗
(y;K + δK )dy dδK ,

which has a phase Θs(K );
(d) the phase is corrected with −Θs(K );
(e) return to point (c) until convergence is obtained.
A ‘static image’ of the dominant structure obtained by this method is given

in figures 14 and 15. The wavenumber range ∆K used for this reconstruction was
∆kxδω = ∆kzδω = 0.1. The velocity field obtained is periodic in the z- and x-directions.
In the following a window is used which is centred at x = z = 0. The windows limits
are ±3.6 δω , ±1.1 δω and ±3.2 δω in the x-, y- and z-directions, respectively.

The symmetries that the eigenvectors exhibit are imposed onto the components of
the ‘characteristic’ velocity field: U1 and U2 are even while U3 is an odd function of
z.

The resulting velocity field is shown in figure 14 for several (x, y)-planes and in
figure 15 for (z, y)-planes, in a framework moving at the convective velocity Uc.
The global convective velocity is used in order to emphasize the large-scale motion

related to the spanwise vorticity ωz . The quantities plotted are U
(1)−Uc +U1(x, y, z),

U2(x, y, z) and U3(x, y, z). The term U
(1) −Uc, added to the longitudinal component,

is representative of the mean longitudinal velocity gradient. Since we are considering
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Figure 15. Velocity vector fields of the dominant mode, viewed in (z, y)-planes for various
streamwise locations.

only the first POD mode, the directly measured mean velocity gradient cannot be
used to translate the effects of the vorticity induced by the mean shear on the flow
field. This problem is of the same nature as the one encountered in the dynamical
systems approach when dealing with the relationship between the averaged field and
the POD modes retained in the Galerkin projection (see Aubry et al . 1988). In order

to scale the mean velocity gradient to the first POD mode, a mean velocity profile U
(1)

is calculated from this mode by considering a Boussinesq approximation (Boussinesq
1877) and integrating the 〈u′v′〉(1)(y) profile in the y-direction. Here 〈u′v′〉(1)(y) is the
contribution of mode (1) to the Reynolds stress 〈u′v′〉. This procedure leads to an
‘equivalent’ difference of velocity ∆U(1) of about 12.3 m s−1, somewhat smaller than
the one directly measured (∆U=17.6 m s−1).

The dominant organization obtained is shown in figure 14 and corresponds to
two large eddies, located at x = ±1.5δω and therefore separated about 3δω in the
streamwise direction. In fact, the centre of the domain is located on a saddle point.
This result is consistent with the fact that the POD selects the more ‘energetic’
structure. The dominant mode is then centred where the turbulence production is
maximum, i.e. the braid (Hussain 1986). Note that when z increases, the magnitude of
the velocity decreases. This is due to the decrease of the spanwise correlation for large
spanwise separations. A similar feature, although less pronounced, is observed if one
considers the largest |x| location. Another interesting feature can be found on this
figure, when considering planes located at a large distance from z = 0. The centre of
the eddies is gradually displaced upstream. For z ' 3δω , the dominant eddy is centred
on x = 0. This indicates that the dominant organization is modulated in the spanwise
direction, the axis of the spanwise aligned vortex being tilted in the (x, z)-plane.

Selected slices of the velocity field in planes normal to the streamwise direction
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Figure 16. Iso-surfaces of velocity U2 component of the dominant mode – dark grey, U2=0.02∆U
– light grey, U2=-0.02∆U. Size of the box Lx=7.3δω , Ly=2.4δω and Lz=6.4δω .

are plotted on figure 15. By considering the U3 and U2 velocity components of
the dominant structure in (z, y) cross-sections, an illustration of the streamwise
vorticity ωx is obtained. We focus here on the left-hand-side structure (x < 0)
appearing in figure 14. Note that symmetrical trends are found if x-positive planes
are considered. Near z = 0, two dominant motions can be seen: when upstream
sections are considered (x < xc) the flow goes upward, while at downstream sections
(x > xc) a downward fluid motion is observed. These motions are associated with
counter-rotating streamwise vortices separated by from about 3.2δω at |x− xc| ' δω
to about 2δω at |x− xc| ' 0.5δω . Near the dominant structure core (i.e. x ' −1.5δω)
the global flux in the (z, y)-plane is nearly zero and, at this location, the spanwise
wavelength is about 6δω . Note that the symmetries applied in the z-direction impose
the appearance of this kind of organization.

The modulation of the spatial organization of the dominant mode can be clearly
seen in figure 16 where a perspective view of iso-surfaces of the U2 velocity component
are plotted. This velocity component (corresponding to the one normal to the splitter
plate) is indicative of the global organization of the quasi-two-dimensional dominant
structure. This kind of plot is preferred here to more conventional vorticity iso-
surface plots, because of the correlation damping which results in the attenuation
of the velocity levels with the distance from the centre of the box and hence no
significant vortices would be found. Nevertheless, from this plot it appears clear that
this dominant mode is strongly distorted. The resulting organization is in agreement
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with the well-established notion of lambda-shaped organization of the mixing layer
(see Nygaard & Glezer 1991 and Lesieur 1993).

7. Conclusions
The large-scale structures in a plane turbulent mixing layer have been studied

through the use of correlations and the POD. The correlation tensor has been
calculated from data collected with two rakes of cross-wires lying perpendicular to
the splitter plate. Two separate experiments were performed to acquire the necessary
data and the missing information was filled in by using the continuity relationship. The
POD has been applied twice: first, to only the u- and v-components of the correlation
tensor and, secondly, to the full correlation tensor, i.e. u, v and w information.

The auto-spectra exhibit characteristics consistent with the known phenomena for
this flow field. In the outer part of the mixing layer, the uu-, vv- and ww-components
all have a broad-band peak at the characteristic wavelength associated with the
large-scale spanwise organization k1δω ' 0.3, while having very little energy past our
measured third spanwise wavenumber. The vv and ww spectra also exhibited this
behaviour near the centre of the mixing layer; however, the ww spectrum is broader
band in k3. Near the centre of the mixing layer the uu spectra exhibited significantly
different behaviour from the other spectra, with the streamwise wavenumber peaking
at approximately half the value was observed on the edge.

The solution of the eigenvalue problem has shown the rapid convergence of the
POD modes. The first mode contained approximately 49% of the turbulent kinetic
energy while 99% was captured with approximately seven modes. The eigenvalue
spectra appeared to be the combination of the individual velocity auto-spectra with
the broad-band peak at k1δω ' 0.3 along with the information in the low span-
wise/streamwise wavenumber corner which is representative of the centre of the
mixing layer. The addition of the w information only seemed to affect this area, which
is representative of the secondary structure in the mixing layer. This seems consistent
with geometric arguments about the flow structure in the mixing layer, in which one
would not expect the spanwise structures to contain much kinetic energy that can be
attributed to the w-component. However, near the centre of the mixing layer a signifi-
cant amount of the energy can be attributed to the w-component. The eigenfunctions
for the first mode have also been shown to contain the essential physics of the flow.

Applying the shot-noise theory to the first POD mode allowed the representation
of a static description of the ‘dominant mode’ in physical space. The phase inde-
termination in the homogeneous directions was solved by considering the spectral
continuity concept for the candidate structure. The ‘structure’ obtained corresponds
to two quasi-two-dimensional vortices, whose axes are globally spanwise orientated,
separated by about three times the vorticity thickness in the streamwise direction.
Remarkably, with this approach, the dominant mode is centred on a zone located
between two large-scale quasi-two-dimensional structures. This result is consistent
with the nature of the POD which provides an optimal description in terms of en-
ergy: the resulting structure therefore points to a ‘energetical area,’ the saddle point,
where most of turbulent energy production occurs. These vortices are found to be
distorted in the spanwise direction. Contra-rotative streamwise-aligned vortices are
also contained in this first POD mode, whose spanwise distance varies from one and
a half to three times the vorticity thickness, depending on the location considered
within the structure. The results are in agreement with the network or lambda-shaped
organization notions of the turbulent mixing layer.
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The rapid convergence of the POD modes, along with capturing of the essential
flow physics in the first mode, suggests that the development of a low-dimensional
dynamical systems model would be fruitful. Such a model has been developed and is
the subject of Part 2.
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